Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The domestication of agriculture is widely recognized as one of the most crucial technological adaptations for the transition of humanity from hunter-and-gatherer groups into early city-states and ultimately, complex civilizations. As humankind sets forth to permanently establish itself on the Moon and use it as a testing ground to colonize other worlds, like Mars, agriculture will again play a pivotal role. In this case, the development of sustainable crop production systems capable of succeeding in these harsh environments becomes vital to the success of our star-faring journey. Over decades, studies varying in species and approaches have been conducted in microgravity, testing the limits of plants and various growth systems, to better understand how Earth-based agriculture could be translated into environmental conditions and therefore evolutionary pressures beyond what life on our planet has known. While we have passed several significant milestones, we are still far from the goal of a sustainable agricultural system beyond our planet Regolith-based agriculture (RBA) should be a component of sustainable agriculture solutions beyond Earth, one which can also provide insight into plant growth in poor soils across our own world. However, RBA studies are in their infancy and, like any other new field, need an established set of parameters to be followed by the RBA community so the generated data can be standardized and validated. Here, we provide an extensive multi-disciplinary review of the state of RBA, outline important knowledge gaps, and propose a set of standardized methods and benchmarks for regolith simulant development and selection as well as plant, microbe, and plant-microbe interaction studies conducted in lunar and Martian regolith. Our goal is to spur dialog within the RBA community on proper regolith simulant selection, experimental design, and reporting. Our methods are divided into complexity tiers, providing a clear path for even the simplest experiments to contribute to the bulk of the knowledge that will shape the future of RBA science and see it mature as an integrated part of sustainable off-world agriculture.more » « less
-
Available soil moisture is thought to be the limiting factor for most ecosystem processes in the cold polar desert of the McMurdo Dry Valleys (MDVs) of Antarctica. Previous studies have shown that microfauna throughout the MDVs are capable of biological activity when sufficient soil moisture is available (~2–10% gravimetric water content), but few studies have attempted to quantify the distribution, abundance, and frequency of soil moisture on scales beyond that of traditional field work or local field investigations. In this study, we present our work to quantify the soil moisture content of soils throughout the Fryxell basin using multispectral satellite remote sensing techniques. Our efforts demonstrate that ecologically relevant abundances of liquid water are common across the landscape throughout the austral summer. On average, the Fryxell basin of Taylor Valley is modeled as containing 1.5 ± 0.5% gravimetric water content (GWC) across its non-fluvial landscape with ~23% of the landscape experiencing an average GWC > 2% throughout the study period, which is the observed limit of soil nematode activity. These results indicate that liquid water in the soils of the MDVs may be more abundant than previously thought, and that the distribution and availability of liquid water is dependent on both soil properties and the distribution of water sources. These results can also help to identify ecological hotspots in the harsh polar Antarctic environment and serve as a baseline for detecting future changes in the soil hydrological regime.more » « less
An official website of the United States government
